

www.mjbc.ch µTasker – SPI EEPROM File System

uTaskerSPI_EEPROM.doc/0.01 1/4 17.08.2006

Introduction

µTasker is an operating system designed especially for embedded applications where a tight
control over resources is desired along with a high level of user comfort to produce efficient
and highly deterministic code.

The operating system is integrated with TCP/IP stack and important embedded Internet
services along side device drivers and system specific project resources.

µTasker and its environment are essentially not hardware specific and can thus be moved
between processor platforms with great ease and efficiency.

However the µTasker project setups are very hardware specific since they offer an optimal
pre-defined (or a choice of pre-defined) configurations, taking it out of the league of “board
support packages (BSP)” to a complete “project support package (PSP)”, a feature enabling
projects to be greatly accelerated.

This document illustrates how to make use of the SPI EEPROM file system support. It allows
saving internal FLASH space in processors with limited resources by offloading the file
system to an external EEPROM connected via SPI (Serial Peripheral Interface). Very low
cost components allow 16, 32 or 64k of external file system space to be connected.

The necessary circuits are shown and also a test setup for common evaluation and debug
boards.

The pros and cons of SPI EEPROM

The µTasker supports a simple file system by default in internal FLASH memory. When there
is space available this is the best solution since it requires no external components and
access and programming is optimally fast.

However there are often circumstances when using small devices that the program size is
limited by the requirement to have also space for the file system. Alternatively the space
available may limit the content stored in the file system and larger space would make for
improved content or larger data recordings, etc. In this case the SPI EEPROM based file
system enables a simple and low cost method of ‘pepping up’ the system.

For example, the NE64 uses by default 48k linear program space and a 16k page for the file
system. Should the program require the full 64k space (including paging) it is necessary
either to use the 112-pin version with external paged memory to add FLASH or else the SPI
EEPROM file system can be activated by using the appropriate project setting. 64k program
with 64k web pages can make rather neat and powerful applications suddenly very possible
even with such a small device.

I just check the present price for the devices (M95128, M95256, M95512) and they are
available for between $2 and $4 for single quantities, the larger memories hardly costing
more than the smaller ones….

The drawback of the SPI EEPROM solution is its speed of operation. When reading, each
byte has to be collected serially from the external device and when writing the EEPROM
write cycles do take somewhat longer that the internal FLASH writes. The SPI clock speed is
set as high as possible to keep byte transmissions as short as possible but is limited by the
speed of the device itself where between 2MHz and 10MHz (depending on voltage and exact
device type) is possible, giving byte access times of around 0,8us to 4µs.

There is also a little overhead involved in addressing the chip contents, this being smaller
when larger amounts of data are actually transferred in a linear fashion. Write times of up to
5ms are to be expected when actually programming data.

www.mjbc.ch µTasker – SPI EEPROM File System

uTaskerSPI_EEPROM.doc/0.01 2/4 17.08.2006

This is sometimes (slightly) noticeable but many applications, such as web pages from the
web server, are not at all critical and so are perfect examples of how such data can be
offloaded in this manor. During write cycles the application will be blocked for the write
periods and so it should be considered in the design as to whether writes during critical
operations could cause problems or not. Data which is set only once, or during servicing, etc.
(again - web pages are good examples) will of course not cause any difficulties…

Activating the SPI EEPROM in the µTasker project

This is the simple bit, but you will need to be using the project V1.2.008 or higher for the
support to be completely available.

Comment in the define SPI_FILE_SYSTEM and comment out the define
FLASH_FILE_SYSTEM. The FLASH based file system will be shut out and the SPI EEPROM
based version will be used instead.

At the time of writing the SPI EEPROM doesn’t support sharing the SPI interface with other
devices. Therefore the define SPI_INTERFACE should not be activated.

Depending on the device which is to be attached, set the define for the chip size
EEPROM_16K, EEPROM_32K or EEPROM_64K as required.

Recompile the project and you will be ready to test. The hardware must of course be
available, so let’s get on down to building it if it’s not yet ready.

Building a test circuit for the EVAL/DEMO board

The necessary circuit for the SPI EEPROM is shown in appendix A. It is shown for
connecting to a number of evaluation boards.

Here are a couple of photos of a simple board which I soldered together which fits the
freescale demo boards for the NE64 and ColdFire M5223X. It is no great feat of engineering
as is clearly visible but it does work well and due to the few connections required, is quite
easy to get right.

DIP version of M95256 and a single row
connector. I diligently added the 100nF cap
although it works without it…

The rear view is a bit of an eye-sour but, as I
said, it does works fine.

www.mjbc.ch µTasker – SPI EEPROM File System

uTaskerSPI_EEPROM.doc/0.01 3/4 17.08.2006

And here it is in action on the DEMO9S12NE64, the M52235EVB and the M52233DEMO.
Many thanks to the designers of the freescale boards who have made the pin out compatible -
so it fits all perfectly.

 DEMO9S12NE64 M52233DEMO

M52235EVB

FLASH emulation

The SPI EEPROM operates in a manor which emulates the FLASH used in the FLASH file
system. This means that the user interface and the file system itself remain identical. The
only difference is the actual access to the memory itself where instead of reading directly
from FLASH memory or writing using IAP (In-Application Programming) techniques, the
reads and writes are via the SPI interface, respecting the requirements of the SPI EEPROM
devices.

www.mjbc.ch µTasker – SPI EEPROM File System

uTaskerSPI_EEPROM.doc/0.01 4/4 17.08.2006

Appendix A

1 2 3 4 5 6

A

B

C

D

654321

D

C

B

A

Title

Number RevisionSize

B

Date: 5-Aug-2006 Sheet of
File: C:\MJBC\Internal\VIPmidi1\Mark\VIP.ddb Drawn By:

S1

Q2

W3

Vss4

Vcc 8

HOLD 7

C 6

D 5

U101
M95XXX

DEMO9S12NE64

3V3

GND

J50 13

PS
5/

M
O

SI

17212319

PS
6/

SC
K

PS
7/

SS
_B

PS
4/

M
IS

O

MISO

SS

SCK

MOSI

M52235EBV

MCU_PORT 13

Q
SP

I_
D

O
U

T

17212319

Q
SP

I_
SC

K

Q
SP

I_
C

S0

Q
SP

I_
D

IN

M52233DEMO

J1 13 17212319

P3
_3

V

G
N

D

+3
.3

V

G
N

D

V
X

G
N

D

GND GND

VX_EN set VX_EN set

Q
SP

I_
D

O
U

T

Q
SP

I_
SC

K

Q
SP

I_
C

S0

Q
SP

I_
D

IN

uTasker - SPI EEPROM FILE SYSTEM TEST INTERFACE - Freescale

C101
100nF 50V Ceramic

GND

R101
10k

R102
10k

Test adapter for NE64 and M5223X demo / evaluation boards

